Statistics - Table of Contents

Up to covariance

  1. 1. Random Variables
    X, Y · P(X = x) · fX(x)
  2. 2. Expectation
    E[X] = Σx x P(X = x)
    E[X] = ∫ x fX(x) dx
  3. 3. Moments
    E[Xn]
    Central: E[(X − μ)n]
  4. 4. Variance
    Var(X) = E[(X − μ)2]
    Var(X) = E[X2] − μ2
  5. 5. Standard Deviation
    σX = √Var(X)
  6. 6. Joint Distributions
    P(X = x, Y = y) · fX,Y(x, y)
  7. 7. Marginals
    Discrete: P(X = x) = Σy P(X = x, Y = y)
    Continuous: fX(x) = ∫ fX,Y(x, y) dy
  8. 8. Conditional Probability
    P(Y = y | X = x) = P(X = x, Y = y) / P(X = x)
    fY|X(y | x) = fX,Y(x, y) / fX(x)
  9. 9. Conditional Expectation
    Discrete: E[Y | X = x] = Σy y P(Y = y | X = x)
    Continuous: E[Y | X = x] = ∫ y fY|X(y | x) dy
  10. 10. Covariance
    Cov(X, Y) = E[(X − μX)(Y − μY)]
    Cov(X, Y) = E[XY] − μX μY
  11. 11. Correlation
    ρXY = Cov(X, Y) / (σX σY) · ρ ∈ [−1, 1]