Statistics - Table of Contents
Up to covariance
- 1. Random VariablesX, Y · P(X = x) · fX(x)
- 2. ExpectationE[X] = Σx x P(X = x)
E[X] = ∫ x fX(x) dx - 3. MomentsE[Xn]
Central: E[(X − μ)n] - 4. VarianceVar(X) = E[(X − μ)2]
Var(X) = E[X2] − μ2 - 5. Standard DeviationσX = √Var(X)
- 6. Joint DistributionsP(X = x, Y = y) · fX,Y(x, y)
- 7. MarginalsDiscrete: P(X = x) = Σy P(X = x, Y = y)
Continuous: fX(x) = ∫ fX,Y(x, y) dy - 8. Conditional ProbabilityP(Y = y | X = x) = P(X = x, Y = y) / P(X = x)
fY|X(y | x) = fX,Y(x, y) / fX(x) - 9. Conditional ExpectationDiscrete: E[Y | X = x] = Σy y P(Y = y | X = x)
Continuous: E[Y | X = x] = ∫ y fY|X(y | x) dy - 10. CovarianceCov(X, Y) = E[(X − μX)(Y − μY)]
Cov(X, Y) = E[XY] − μX μY - 11. CorrelationρXY = Cov(X, Y) / (σX σY) · ρ ∈ [−1, 1]